Microwave Modeling Using Neural Networks and Iir Filters in Time and Frequency Domains
نویسندگان
چکیده
A method combining Infinite Impulse Response (IIR) filters and Neural Networks (NN) is proposed for precise electromagnetic (EM) of complex structures true the use of efficient optimization and parameterization techniques. This method is based on the characterization of the time response as a transfer function using a digital filter. The use of the neural network allows then the modeling of the geometric variation of the studied structure. The method is then also expanded in the frequency domain for studying the variation of the scattering parameters for the studied structures as a function of frequency. This is achieved by building a spectral transfer function. The main difference between time and spectral analyses is discussed and it is shown that it is more advantageous to interpolate the transfer function's poles and zeros rather than the polynomial coefficients The validity of our proposed technique is demonstrated on a microstrip step in width discontinuity and a microstrip filter, both analyzed in the time domain and also on a chamfered bend analyzed in the frequency domain.
منابع مشابه
Low latency IIR digital filter design by using metaheuristic optimization algorithms
Filters are particularly important class of LTI systems. Digital filters have great impact on modern signal processing due to their programmability, reusability, and capacity to reduce noise to a satisfactory level. From the past few decades, IIR digital filter design is an important research field. Design of an IIR digital filter with desired specifications leads to a no convex optimization pr...
متن کاملDesign of IIR Digital Filter using Modified Chaotic Orthogonal Imperialist Competitive Algorithm (RESEARCH NOTE)
There are two types of digital filters including Infinite Impulse Response (IIR) and Finite Impulse Response (FIR). IIR filters attract more attention as they can decrease the filter order significantly compared to FIR filters. Owing to multi-modal error surface, simple powerful optimization techniques should be utilized in designing IIR digital filters to avoid local minimum. Imperialist compe...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملAdaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm
A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000